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Abstract

We describe optimization techniques on the Cray X1
that are either profoundly unportable or counterin-
tuitive. For example, one can use small, static co-
arrays, Cray pointers, and the “volatile” attribute
to pass arbitrary high-bandwidth, minimal-latency
messages with no procedure-call overhead. Also, it
may be advantageous to bring “if” statements in-
side “do” loops for vectorization. This paper de-
scribes how and why.

1 Introduction

We have come across a number of optimization tech-
niques on the Cray X1 that are counterintuitive at
first glance. The techniques described here are the
following, with titles that appear to contradict other
well-known techniques.

e Avoid using cache.

Replace BLAS calls with “do” loops.

e Minimize vector length.

Move “if” statements inside loops.
e Use more pointers.
e Add infinite loops.

In the following sections, we describe each opti-
mization technique in greater detail and provide an
example where it has improved performance. We
end each section with a short assessment of the ap-
plicability of each technique to other applications.
Because discussion of each optimization is self con-
tained (the last two optimizations work together),
we have included concluding remarks at the end of
each section instead of collecting them in a final sec-
tion.

2 Avoid using cache

The Cray X1 has the ability to load and store di-
rectly between memory and vector registers, without
storing to the cache. This non-allocation of cache
can improve performance when the memory opera-
tions have no temporal or spatial locality. An exam-
ple with such a lack of locality is the strided “triad”
benchmark, which has been used by Oliker et al. [1]
in performance analyses. The benchmark is based on
the “triad” benchmark from the STREAM suite [2],
which measures the performance of element-wise
vector multiplication and addition, written in For-
tran array notation as follows.

a(:)=b(:)+s*c(:)

The strided triad benchmark measures the effect
of strided memory access on performance. We have
implemented this benchmark by timing the follow-
ing operation on one X1 multi-streaming processor
(MSP) for “stride” values of 1-500 with vectors of

10® double-precision real elements, where “s” is a
double-precision real scalar.

a(::stride)=b(::stride)+s*c(::stride)

Fig. 1 compares the performance of our implemen-
tation with and without cache allocation. Avoiding
allocation is implemented with a Cray directive that
lists the variables that should not be cached. For our
strided triad benchmark, the vector declarations and
the directive take the following form.

real(8),allocatable::a(:),b(:),c(:)
'dir$ no_cache_alloc a,b,c

The results in Fig. 1 compare the performance with
and without the second line above.

Outside of bank conflicts, the strided triad with
caching achieves about 4 GB/s, while the non-cached
triad achieves over 10 GB/s. This is a significant
improvement.

Despite the magnitude of the improvement for this
benchmark, this optimization is used rarely in appli-
cations. It is unusual for applications to have most
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Figure 1: Performance of strided triad benchmark on one MSP with and without allocating cache.



memory operations with such an extreme lack of lo-
cality as in the benchmark.

3 Replace BLAS calls with
“do” loops

Vendors of systems for high-performance computing
(HPC) often provide highly optimized libraries for
the Basic Linear Algebra Subprograms (BLAS) [3],
and this is the case for Cray. Performance often
improves dramatically when Fortran “do” loops or C
“for” loops are replaced by the corresponding BLAS
calls.

Early in the lifetime of the X1, some BLAS calls
were not yet highly optimized, and the correspond-
ing “do” loops could outperform them because the
compiler could take advantage of the context to per-
form additional optimizations. We found this to
be true for the BLAS3 call CGEMM, for example,
where CGEMM performs matrix-matrix multiplica-
tion using single-precision complex matrices.

CGEMM and other calls have since been im-
proved, reducing the need to replace them with “do”
loops. Certain cases still exist, however, where the
equivalent “do” loops perform better, typically in
situations where the compiler can perform additional
optimizations with inlined loops that it cannot with
a subroutine call.

An example is a benchmark we used to mea-
sure the performance of DGER, a BLAS2 operation
that performs a rank-one vector update of a double-
precision real matrix. The benchmark performs a
number of DGER operations on a matrix of size
4480 x 4480, as described in [4]. Because of the rel-
atively small size of the test matrix, the benchmark
performs many iterations to get accurate timing re-
sults. In its original form, the benchmark compared
the times for the following two equivalent loops.

do iter=1,niters
call dger(n,n,alpha,x,1,y,1,a,n)
end do

do iter=1,niters
do j=1,n
do i=1,n
a(i,jl)=a(i,j)+alpha*x(i)*y(j)
end do
end do
end do

With “n=4480" and “niters=100", performance
for the DGER version on a single MSP was 2.4 GF,
or 20% of the peak performance of 12.8 GF. In con-
trast, the timing results for the “do”-loop version in-
dicated a performance of 138 GF, or 1078% of peak!

The Cray Fortran compiler can produce a listing
of the source code, called a “loopmark”, that identi-
fies what optimizations were performed on each loop.
The loopmark listing for the above loops reveals the
source of the unbelievable performance.

Di-—-————— < do iter=1,niters
Di Mr----- < do j=1,n

Di Mr Vm—--< do i=1,n
Di Mr Vm a(i,j)=
Di Mr Vm--> end do

Di Mr————- > end do
Di--—————- > end do

The “Vm” indicates that the “i” loop was vectorized
at that level (“v”) and multistreamed at a higher
level (“m”). The “Mr” indicates that the “j” loop
was multistreamed (“M”) and unrolled (“r”). But
it is the “Di” that indicates the source of the per-
formance; the “iter” loop—the timing loop—was
interchanged with another loop (“i”) and deleted
(“D”)!

The compiler was able to modify the computation
to eliminate the timer loop. The three nested loops
from above became the logical equivalent of the fol-
lowing.

nalpha=niters*alpha
do j=1,n
do i=1,n
a(i,j)=a(i,j)+nalpha*xx(i)*y(j)
end do
end do

The reported timings were thus based on many fewer
operations than expected, so the resulting calcula-
tion of flops was incorrect.

The benchmark was modified to eliminate this op-
timization, for it was intended to represent an ap-
plication where each DGER. operation depended on
the result of the previous one. Thus the optimization
was not effective for the real application.

Other applications may include BLAS2 or BLAS1
calls within independent loops, in which case replac-
ing them with explicit loops could allow “strength
reduction” optimizations like the one above. We
expect Cray to provide the ability to inline some
BLASTI calls in the near future, reducing the need to
consider this optimization.



Replacing BLAS3 calls is unlikely to improve per-
formance in any case because they already represent
triply nested loops and are more amenable to spe-
cialized tuning.

4 Minimize vector length

On previous generations of Cray vector systems,
long vectors achieve performance closer to peak than
short vectors because they better amortize the la-
tencies and startup costs of pipelined operations.
Long vectors place significant requirements on mem-
ory bandwidth, however, but these previous vector
systems have the bandwidth to meet these require-
ments for the computation rates they can sustain.

The same is not true for the X1. Though it has
greater bandwidth than previous systems, its com-
putation rate has increased even more. By splitting
loops into blocks the size of the vector registers,
one can improve performance by enhancing local-
ity within the registers and cache and thus reducing
the requirements for memory bandwidth. Also, the
compiler can eliminate one level of the loop nest by
replacing it with vector instructions.

We used the register-blocking technique to im-
prove the performance of the FT benchmark from
the NAS suite of parallel benchmarks [5]. FT per-
forms distributed 3D FFTs that have a blocking size
as input, and Fig. 2 compares performance of the F'T
class-C benchmark problem for blocks of size 64 and
of the size that gives four blocks per MSP. Having
four blocks per MSP maximizes the block size while
allowing for multistreaming over blocks. The block
size of 64 allows the inner looping to be eliminated
in favor of vector instructions.

We used loopmarks to determine if the looping
was eliminated; marks of “Vs” indicate vectoriza-
tion with “short loops”, loops short enough to be
implemented as vector instructions with no actual
looping. There were five cases where the compiler
could not determine that a loop was “short”, so we
added the following directive to each.

!dir$ shortloop

Fig. 2 shows that the short-loop version consis-
tently outperforms the four-block version over the
range of MSP counts tested. The performance is
plotted on a log scale, however, so it is difficult to
gauge the magnitude of the performance increase.
Fig. 3 shows the relative improvement of the short-

loop version for each MSP count; it outperforms the
maximum-block version by 1.6-1.8x.

The technique of blocking for vector registers is
likely to be effective for many applications, though
it may not have as great an effect for full applications
as it does for small benchmarks like FT. It may be a
“next step” for per-processor tuning, after vectoriza-
tion and multistreaming, particular for systems like
the Cray X1E, which will have substantially better
floating-point performance than the X1 but with the
same memory subsystem.

5 Move “if” statements inside
loops

It is common practice to try to keep “if” statements
outside of loops when the “if” test is independent
of loop iteration; this avoids redundant tests and
branches during execution. We have come across
situations, however, when it is better to pull “if”
statements back inside loops to allow multiple loops
to be fused together. Fusing the loops may allow
work arrays to be demoted to scalars, which the vec-
torizing compiler then promotes to vector registers,
increasing register re-use and eliminating loads and
stores to main memory.

One example is the “state” subroutine in the Par-
allel Ocean Program (POP) [6], version 1.4.3. This
Fortran subroutine has a number of optional argu-
ments, and it must check for the existence of those
arguments before computing their values. Here is
an excerpt from the unmodified “state”, where the
variables written in all capital letters are arrays.

if (present(RHOOUT)) then
RHOOUT=merge ( ( (untO+RHOO) *
$ BULK_MOD*DENOMK) *p001,
$ c0,KMT>=k)
endif
if (present(RHOFULL)) then
RHOFULL=merge ( ((unt0+RHOO) *
$ BULK_MOD*DENOMK) *p001,
$ c0,KMT>=k)
endif

The unmodified subroutine is written as a series
of array statements, as illustrated above. The com-
piler can fuse array statements within the same code
block, thus re-using registers and cache variables
somewhat, but it does not fuse loops across “if”
statements.
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Figure 2: Performance of the NAS FT benchmark for the class C problem using various MSP counts,
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four blocks per MSP.



The entire subroutine can be written as a sin-
gle loop nest by moving the “if” statements inside.
This fusion of all the array statements allows many
of the temporary arrays to be demoted to scalars.
Here is the resulting code for the above excerpt.
Note that many arrays (all upper case before) are
now scalars (all lower case).

do j=1,jmt ; do i=1,imt

if (present(RHOOUT)) then
RHOOUT (1, j)=merge (((untO+rho0) *

$ bulk_mod*denomk)*p001,
$ c0,kmt_mask)
endif
if (present(RHOFULL)) then
RHOFULL(1i, j)=merge (((untO+rho0) *
$ bulk_mod*denomk)*p001,
$ c0,kmt_mask)

endif

end do; end do

To measure the performance improvement, we did
before and after runs of the POP benchmark prob-
lem with 1° resolution on one MSP. We instrumented
each executable using “pat_build” and ran with
the environment variable “PAT_RT_EXPERIMENT” set
to “samp_cs_time”. The results from “pat_report”
are the following. Before (using array statements):

116.3%133.7%119545| state@state_mod_
After (fused into one loop nest):
|13.5%131.7%]15663| state@state_mod_

The “state” subroutine went from 16.3% of runtime
to 13.5%, and from 19,545 profile samples to 15,663,
an improvement of 25% for this subroutine.

Moving “if” statements inside loops is a spe-
cific technique for the general strategy of reduc-
ing memory-bandwidth requirements by blocking for
registers and cache. After moving an “if” state-
ments into a loop nest, it is important to confirm
through loopmarks that the nest still vectorizes and
multistreams. One should also consider the trade-
off between the performance improvement and any
reduction in readability or maintainability of the re-
sulting source code.

6 Use more pointers

HPC programmers should typically avoid the use of
pointers because they limit or inhibit a compiler’s

ability to analyze dependences, thus limiting or in-
hibiting many optimizations. One reason to use
pointers on the X1 is to improve performance of par-
allel communication; pointers can be used to replace
MPI library calls [7] with direct loads and stores to
remote memory.

Co-Array Fortran (CAF) [8] provides a way to cre-
ate distributed arrays and access elements of such
arrays remotely. A problem with CAF, however, is
that its use in one procedure can force modification
of all the procedures that call it, along with all the
procedures that call those, and so on. This propa-
gation of changes comes because an argument pro-
moted to a co-array must be declared as a co-array
in any procedure that might call the procedure.

Pointers can be combined with CAF to “cheat”
on the X1 and take advantage of the fact that the
X1 memory is globally addressable. We use the term
“cheat” because one cannot assume global address-
ability for all implementations of CAF.

One can use the following steps to replace MPI
calls with remote memory operations for arbitrary
arguments to a procedure, without requiring any
modifications to calling procedures.

e Declare a co-array of “INTEGER(8)”.
e Declare a Cray pointer on the receiving process.

e The sender stores an array address in the re-
ceiver’s co-array location, where the address
comes from the non-standard intrinsic function
“loc” applied to the sender’s array.

e The receiver sets the pointer to the local value of
the co-array, the value just assigned by sender.

e The receiver uses the pointer to access the
sender’s array.

An example of this technique is our modification
of the “global_scatter” subroutine from CICE [9],
a global model of ocean ice used for climate stud-
ies. Consider the following excerpt from the modi-
fied subroutine, which lists the code relevant to the
master processor in the scatter operation.

integer(8)::
$ remote_address(NPROC_X*NPROC_Y) [*]
real(dbl_kind)::
$ workg(imt_global,jmt_global)

integer(8)::address



if (my_image==master_image) then
address=loc (workg)
do i=1,num_images()
remote_address (master_image) [i]=
$ address
end do
end if

! Synchronize

First note that the co-array is also an array of size
“NPROC_X*NPROC_Y”, which is the total number of
processors in the 2D decomposition used by CICE.
One might think of the co-array as two dimensional,
where one dimension is local to each process and the
other is distributed over processes.

The master process takes the address of the global
work array, “workg”, and distributes that address to
all processes by copying the address to the location
indexed by the process number of the master.

The following excerpt then lists the code for the
operation on all processes.

integer(8)::
$ remote_address(NPROC_X*NPROC_Y) [*]
real(dbl_kind)::work(ilo:ihi, jlo:jhi)

real (dbl_kind)
$ workg_remote(imt_global, jmt_global)
pointer(workg_address, workg_remote)

! Synchronize

workg_address=remote_address(master_image)
work(ilo:ihi, jlo:jhi)=
$ workg_remote(ilog:ihig, jlog:jhig)

After synchronizing, each process assigns the pointer
“workg-address” to the address provided by the
master. Each process knows to read the location in-
dexed by the process number of the master. For the
scatter operation, the co-array does not really need
to be a local array also, but making it a local array
allows the implementation of more-complex opera-
tions, such as all-to-all or many-to-many communi-
cation.

Once the pointer is assigned, each process can read
directly from the remote array as if it were local.

In the excerpts above, we indicate where synchro-
nization is necessary but not how it is implemented.
The following section describes the implementation.

7 Add infinite loops

We implement synchronization for the above
example using a “logical” co-array and the
“integer(8)” co-array itself. These implementa-
tions include what appear to be infinite loops; they
rely on external processes to change the value of their
test expressions. The technique is as follows.

e All processes initialize the “integer(8)” co-
array to zero.

e The sender initializes a “logical” co-array to
false.

e The sender stores the address to the receivers’
co-arrays, and the address is guaranteed to be
nonzero.

e The recievers spin-wait for a nonzero address.

e After performing the necessary memory opera-
tions, each receiver sets to true the value of the
“logical” co-array on the sender indexed by
the receiver’s process number.

e The sender spin-waits for true values from each
receiver.

It is important that each process continues to read
the values used in the loop tests from main memory,
so the compiler must be instructed to not load the
values into registers and simply reread the registers.
The “volatile” attribute provides just this instruc-
tion. The following excerpt from “global_scatter”
demonstrates the technique. Note that the co-arrays
now have the “volatile” attribute.

integer(8),volatile::

$ remote_address(NPROC_X*NPROC_Y) [*]
logical, volatile::

$ remote_flag(NPROC_X*NPROC_Y) [*]

do while (remote_address(master_image)==0)
end do

! Copy data
remote_address (master_image)=0
remote_flag(my_image) [master_image]=.true.

if (my_image==master_image) then
do i=1,num_images()
do while (.not. remote_flag(i))
end do
remote_flag(i)=.false.
end do
end if



To measure the performance improvement
of the co-array/pointer implementation of
“global_scatter”, we compared production
runs of a coupled POP/CICE model on eight MSPs
for ten simulated days. We instrumented each
executable with “pat_build” and ran with the
environment variable “PAT_RT_EXPERIMENT” set to
“samp_cs_time”.

The original MPI implementation of
“global_scatter”, which wuses “mpi_isend”,
“mpi_irecv”, and “mpi_wait”, took 31,635 profile
samples. Our implementation took just 1,767 profile
samples, a speedup of 18x. For the entire run,
“global _scatter” went from 4.2% of the runtime
to just 0.3%.

The co-array/pointer version was also much sim-
pler to analyze. Consider the following performance
report.

pat_report -b function,callers

This report is useful for determining not only which
procedures take the most runtime, but also which
calls to each procedure take the most runtime. Pro-
cedures internal to the MPI library tend to clog up
such profiles because each generates a new entry
with a full call stack. For example, here are the
“global_scatter” entries pulled out of the report
for the MPI version using “grep”, with some con-
tent on each line removed to conserve space.

|global_scatter

|global_scatter
|global_scatter
|global_scatter

[13.4%] 3.4% 126048|global_scatter
[110.5%114.0% | 3502|global_scatter
[110.0%114.9% | 1|global_scatter
[110.3%147.9% | 2015|global_scatter
[110.0%148.1% | 1lglobal_scatter
[110.0%187.7% | 3lglobal_scatter
[110.0%193.7% | 15|global_scatter
[T | | |global_scatter
[T | | |global_scatter
[110.0%194.1% | 6|global_scatter
[T | | |global_scatter
[T | | |global_scatter
[110.0%197.2% | 2|global_scatter
[10.0%197.6% | 3lglobal_scatter

11

11

11

11

[110.0%] 98.7% | 1|global_scatter
[110.0%] 99.5% | 1|global_scatter
[0.0%] 99.9% |  37lglobal_scatter

The co-array version makes no library calls, so it
only appears once in the profile.

[0.3%193.2%| 1767|global_scatter

Next consider another flavor of performance re-
port.

pat_report -b functions,lines

This report shows which lines in each procedure rep-
resent a significant amount of runtime. For the
MPI version, this report is not useful because all
the time is in the MPI calls; none of the lines of
“global_scatter” show significant usage. The re-
port for the co-array version is useful, however.

[0.3% 193.2% | 1767 |global_scatter

.2%11552|1ine.253
[10.0%193.2%| 100|line.256

[10.0%193.2%| 67|1line.255
[10.0%193.2%| 34|line.264
[10.0%193.2%1 10|line.243
[10.0%193.2%] 3|1ine.216
[10.0%193.2%]1 1|line.295
[

Most of the time in “global_scatter” was spent
on line 253, which is the receiver synchronization
loop; the time for memory operations was insignif-
icant. This indicates that synchronization latency
or a small load imbalance is the primary source of
communication cost.

The dramatic reduction of communication cost
and improved ability to analyze performance may
make the use of co-arrays and pointers well worth
the effort. Expected improvements to the perfor-
mance of MPIT collective operations could reduce the
need, however, and improvements to “pat_report”
could eliminate the analysis advantage. One should
also note that the co-array/pointer technique is not
at all portable, and it is prone to subtle errors that
can lead to deadlock.

Even with improvements to MPI, direct memory
access will likely have significant performance advan-
tages for irregular, latency-bound communication.
Future revisions to the CAF definition may need to
add functionality like the pointer “trick” described
here to make it portable.
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